If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84y^2-5=0
a = 84; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·84·(-5)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*84}=\frac{0-4\sqrt{105}}{168} =-\frac{4\sqrt{105}}{168} =-\frac{\sqrt{105}}{42} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*84}=\frac{0+4\sqrt{105}}{168} =\frac{4\sqrt{105}}{168} =\frac{\sqrt{105}}{42} $
| 6x-110=5 | | -3(x+4)-41=1-27 | | h^2–9h=0 | | k-8=-7(8-7k) | | 4(×+4)-(2x+16)=-4 | | h2–9h=0 | | 13=-1/6u | | (1)/(4)(5x+(16)/(3)(-2)/(3)(3)/(4x)+(1)/(2)=-5 | | 37/3=74/t | | 2(3x-8)=9(5^3+2) | | 3x-13=6x-14 | | 6(x+8)+3=-8(x-2)-3 | | 17/5=9s | | -8=4/5p | | -6n+1=(-22) | | 9-2g=5g+6 | | 5/17=-9s | | 5/3u-5/6=-6/5u-7 | | -4(4x-1)+3=16x+7 | | 1/4(5x+16/3)-2/3(3/4x)+1/2)=-5 | | F=(Cx1.8)+32 | | 0.83+0.04x=0.325 | | x-(1/2x^2)=x^2+2 | | 2(3x+4=2x+8+4x | | 11x^2+x=10=0 | | 0.23x=7.86 | | 6^(2x)=36^2 | | 3÷(x+8)=6 | | -2x2+3x-2=-8x2-2x+2 | | 7/y-1/6=14 | | k+2.1=4.9 | | (x+8)÷3=6 |